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Finite-sample frequency distributions originating from an equiprobability distribution
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Given an equidistribution for probabilitiesp( i )51/N, i 51, . . . ,N. What is the expected corresponding
rank ordered frequency distributionf ( i ), i 51, . . . ,N, if an ensemble ofM events is drawn?
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I. INTRODUCTION

The probabilityp( i ) to draw an eventi from a set ofN
possible events is defined as the limits

p~ i !5 lim
M→`

Mi

M
with (

j 51

N

M j5M , ~1!

where f ( i )[Mi /M is the relative frequency to find thei th
eventMi times in a randomly chosen sample ofM. Accord-
ing to the law of large numbers the relative frequencies s
chastically converge to the corresponding probabiliti
hence, for very large sample sizeM@N we can practically
identify both values. For smaller sample size, however,
distribution of relative frequencies may deviate significan
from the probability distribution~e.g., @1–3# and many oth-
ers!. Assume further the equidistributionp( i )51/N, then for
very large sample sizeM@N one expects that all or almos
all of the N possible events are found in the sample a
occur with approximately equal frequency, whereas in
opposite caseM!N almost all events occur only once or
few times in the sample, i.e., the latter frequency distribut
will deviate significantly from the former one. From th
simple argumentation one may conclude that the freque
distribution that one expects depends sensitively on
sample sizeM. This type of finite size effects is of majo
relevance for statistical analysis of DNA and other bio
quences, e.g.,@4–7#. In this paper we want to calculate th
expected frequency distribution which one finds in dep
dence on the sample sizeM.

If we draw a frequency distribution ofN different events
there areN! possibilities to arrange the events along t
abscissa. An arrangement that leads to a decaying func
for the frequencies or probabilities we call a Zipf order a
the corresponding distribution a Zipf ordered distribution.
find a Zipf ordered frequency distribution that we have
expect if M events from an equidistribution are drawn w
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have to determine in dependence onM how many events~on
average! are not drawn, i.e., are drawn zero times, how ma
are drawn once, twice, etc.

In the following section we derive the expectation val
for the number̂ Ki& of those events which ocurri times in
the sample. The analytic expression is then used to infer
unknown numberN of total events and to compare the the
retically expected Zipf ordered frequency distribution wi
the measured one. The results are useful in connection
entropy estimates computed from finite samples.

II. THE NUMBER Ki OF DIFFERENT EVENTS EACH
OCCURRING EXACTLY i TIMES AND ITS EXPECTATION

VALUE ŠKi‹

The result ofM subsequent drawings from a set ofN
different equiprobable events can be identified with ra
domly placingM indistinguishable balls inN indistinguish-
able urns, each having the same probabilityN21. Denoting
the number of urns containing exactlyi balls by ki , a pos-
sible outcome can be shortly described by the vec
(k0 ,k1 , . . . ,kM); this is what we call a cluster configuration
The number of empty urns is given byk0 and, consequently
the number of occupied urns byN2k0. Any admissible clus-
ter configuration obeys the following two conditions:

(
i 50

M

ki5N ~ total number of urns!, ~2!

(
i 50

M

ki i 5M ~ total number of balls!. ~3!

We are interested in the stochastic variableKi , denoting the
number of urns each filled with exactlyi balls, and its ex-
pectation valuê Ki&. Introducing for eachi 50,1, . . . and
each urnj 51, . . . ,N its related indicatorI i( j ) by the fol-
lowing definition:

I i~ j !5H 1 if urn j contains exactlyi balls

0 else,
~4!

the random variableKi is related to the stochastic indicato
by Ki5( j 51

N I i( j ). Due to the additivity of the expectatio
operator we find
©2002 The American Physical Society03-1
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^Ki&5K (
j 51

N

I i~ j !L 5(
j 51

N

^I i~ j !&5N^I i~ j !&, ~5!

where we have used that all^I i( j )& are identical. The prob-
ability to find exactlyi balls in any of the urns~here labeled
j ) and the remaining balls distributed arbitrarily among t
remainingN21 urns is the binomial distribution, hence,

^Ki&5NS M

i D 1

Ni S 12
1

ND (M2 i )

. ~6!

The expectation valuêKi& indicates how often events in
sample of sizeM occur exactlyi times on an average. W
call these occupation numbersi clusters. Obviously, for smal
M!N nearly all of theN possible events are 0 clusters, i.
they do not occur in our sample. AsM increases the numbe
of single occupations increases as well. For still growingM
the number of multiple occupation becomes larger a
therefore, the number of 1 clusters decreases as more
more events occur multiple times in the sample. Figure
shows the occupation of theN possible different events as
function of the sample sizeM. The lines show the theoretica
result Eq.~6! and the symbols in the left of Fig. 1 show th
clusters as they have been found in sets of random numb

FIG. 1. Expectation values for clusters of different sizes over
sample sizeM taken from a set ofN51000 equidistributed differen
events. The lines show the theoretical result calculated from Eq.~6!.
The symbols show the cluster distribution found from a numer
simulation whereM random integers have been drawn from t
interval@1,1000#. The lower figure shows the same data for a larg
range of sample sizes.
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If we draw only once a sample of sizeM from a set ofN
possible events and calculate the occupation numbers~the
cluster frequencies! the cluster distribution itself is fluctuat
ing ~Fig. 2, filled dots!. Averaging the cluster distribution
over a number of independent selections each of sizeM the
cluster distribution converges to the theoretical curve p
dicted by Eq.~6!. Figure 2 shows the cluster distribution a
found from a random sample of sizeM out of N51000 al-
lowed events together with cluster distributions averag
over 100 independent drawings.

III. ZIPF ORDERED FREQUENCY DISTRIBUTION

Equation~6! allows to determine the expectation value
the number of different eventsN* in dependence on the tota
number of drawn eventsM, which is simply related to the
expected probability to find a cluster of size zero,

N* 5N2^K0&, ~7!

from which we compute

e

l

r

FIG. 2. If samples ofM events are drawn independently, th
resulting averaged cluster distribution converges to the theore
value Eq.~6!. The filled dots show the distribution of clusters o
size 2 ~top! and 6 ~bottom! resulting from a single drawing. The
diamonds are averaged cluster distributions over 100 indepen
drawings of random numbers. The solid lines are the theoret
values according to Eq.~6!.
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FINITE-SAMPLE FREQUENCY DISTRIBUTIONS . . . PHYSICAL REVIEW E 66, 026103 ~2002!
N*

N
512S 12

1

ND M

512expFM lnS 12
1

ND G
512expS 2

M

N DexpF2OS M

N2D G . ~8!

From Eq. ~8! we see that for allM!N2 Eq. ~8! can be
approximated to very good accuracy by

Na*

N
'12expS 2

M

N D , ~9!

a result which has been found before by computer sim
tions @8#. The maximalabsolutedeviation isN* 2Na* 51/e
'0.37 ~for N5M51) that falls rapidly to 1/(2e)'0.18 as
N goes to infinity. In Fig. 3 the analytical result~8! is com-
pared with a simulation. The histograms in the figure sh
the results of a single realization. If we average the num
cal results over several runs the numerical curve falls
gether with the analytical one.

For the wide range of practical interest, 5/8<Na* /M,1,
from Eq. ~9! we may approximate the entropy of the dist
bution if we know the number of different eventsN* con-
tained in a sample of sizeM:

FIG. 3. Number of different eventsN* in a sample of sizeM
drawn from a equidistributionpi51/N. The dashed line shows th
analytical result Eq.~8!, the histograms show the results of a com
puter simulation. top:N51000, bottom:N5100.
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S5 log2N' log2S @3M1A3M ~8N* 25M !#M

12~M2N* !
D . ~10!

We want to compile the results from the preceding sect
to find the desired Zipf ordered frequency distribution. Equ
tion ~6! tells how many, in average, events do not occur
the sample~drawn zero times!, how many are drawn once
twice, etc. This yields directly the Zipf ordered frequen
distribution

f ~ i !55
0 for N> i .N2^K0&

1 for N2^K0&> i .N2^K0&2^K1&

. . .

j for N2 (
k50

j 21

^Kk&> i .N2 (
k50

j

^Kk&.

~11!

Using Stirling’s formula to expand the expressions in Eq.~6!
the analytical result Eq.~11! can be written easily in elemen
tary functions.

Figure 4 shows Zipf ordered frequency distributions c
culated from a sample of random numbers~dashed lines!
together with the theoretical distributions due to Eq.~11!
~solid lines!. The combinatorial theory derived in the prece

FIG. 4. Zipf ordered frequency distributions calculated fro
samples of sizeM from a equiprobability distribution ofN51000
different random numbers~dashed lines!. The theoretical curve due
to Eq. ~11! is drawn with solid lines.
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ing section predicts the Zipf ordered frequency distribut
that results from an equidistribution with good accuracy.

IV. DISCUSSION

Based on combinatorial considerations we calculated
expectation values to findki eventsexactly i times in a
sample of sizeM which have been drawn from an equidi
tribution. These cluster probabilities allow to estimate t
total number of eventsN, given the number ofdifferent
events found in a sample of sizeM is known. Moreover, the
ns

E

02610
e

e

full Zipf ordered frequency distribution could be constructe
By numerical simulations it has been demonstrated that
analytically derived values coincide with experimental r
sults, i.e., with cluster distributions and Zipf ordered fr
quency distributions originating from finite samples of ra
dom numbers.
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