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Finite-sample frequency distributions originating from an equiprobability distribution
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Given an equidistribution for probabilitieg(i)=1/N, i=1,... N. What is the expected corresponding

rank ordered frequency distributidigi), i=1, ... N, if an ensemble oM events is drawn?
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I. INTRODUCTION have to determine in dependenceMrhow many eventgon

averageare not drawn, i.e., are drawn zero times, how many
The probabilityp(i) to draw an event from a set ofN are drawn once, twice, etc.
possible events is defined as the limits In the following section we derive the expectation value
for the numberK;) of those events which ocuirtimes in
N the sample. The analytic expression is then used to infer the
. M . unknown numbeN of total events and to compare the theo-
p(i)= lim M with 121 Mj=M, (1) retically expected Zipf ordered frequency distribution with
the measured one. The results are useful in connection with
entropy estimates computed from finite samples.

M — o0

wheref(i)=M;/M is the relative frequency to find th¢h

eventM; times in a randomly chosen sampleMf Accord- Il. THE NUMBER K; OF DIFFERENT EVENTS EACH
ing to the law of large numbers the relative frequencies stoOCCURRING EXACTLY i TIMES AND ITS EXPECTATION
chastically converge to the corresponding probabilities, VALUE (K;)

hence, for very large sample sik&>N we can practically .
identify both values. For smaller sample size, however, the The result ofM subsequent drawings from a set Hf
distribution of relative frequencies may deviate significantlydifferent equiprobable events can be identified with ran-
from the probability distributior(e.g.,[1—3] and many oth- domly placingM |nd|_st|ngwshable balls imN |[u1:i|st|ngw§h-
ers. Assume further the equidistributiqu(i)=1/N, then for ~ @ble urns, each having the same probabilty". Denoting
very large sample sizB1>N one expects that all or almost the number of urns containing exactlyalls byk;, a pos-
all of the N possible events are found in the sample andSiPlé outcome can be shortly described by the vector
occur with approximately equal frequency, whereas in thdXo:Ki. - - . ky); this is what we call a cluster configuration.
opposite casél <N almost all events occur only once or a | "€ number of empty urns is given lay and, consequently,
few times in the sample, i.e., the latter frequency distributiorf"® number of occupied urns By—ko. Any admissible clus-
will deviate significantly from the former one. From this t€r configuration obeys the following two conditions:
simple argumentation one may conclude that the frequency
distribution that one expects depends sensitively on the
sample sizeM. This type of finite size effects is of major
relevance for statistical analysis of DNA and other biose-
quences, e.g[4-7]. In this paper we want to calculate the
expected frequency distribution which one finds in depen-
dence on the sample siié. !
If we draw a frequency distribution dfl different events
there areN! possibilities to arrange the events along the
abscissa. An arrangement that leads to a decaying functi
for the frequencies or probabilities we call a Zipf order and
the corresponding distribution a Zipf ordered distribution. To
find a Zipf ordered frequency distribution that we have to
expect if M events from an equidistribution are drawn we

M
E ki=N (total number of urng (2)
=

<

kii=M (total number of balls 3)

0

We are interested in the stochastic variakle denoting the

mber of urns each filled with exactlyballs, and its ex-
pectation valugK;). Introducing for eaci=0,1,... and
each urnj=1,... N its related indicatoid;(j) by the fol-
lowing definition:

1 ifurnj contains exactly balls

li(j)=

0 else,
*Email address: thorsten.poeschel@charite.de
URL: summa. physik.hu-berlin.dekies the random variabl&; is related to the stochastic indicators
"Email address: freund@physik.hu-berlin.de by Ki=EJN:1Ii(j). Due to the additivity of the expectation
URL: summa. physik.hu-berlin.dejanf operator we find
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FIG. 1. Expectation values for clusters of different sizes over the
sample sizéVl taken from a set ol = 1000 equidistributed different FIG. 2. If samples ofM events are drawn independently, the
events. The lines show the theoretical result calculated front@tq. resulting averaged cluster distribution converges to the theoretical
The symbols show the cluster distribution found from a numericalvalue Eq.(6). The filled dots show the distribution of clusters of
simulation whereM random integers have been drawn from the size 2 (top) and 6 (bottom) resulting from a single drawing. The
interval[ 1,1000. The lower figure shows the same data for a largerdiamonds are averaged cluster distributions over 100 independent
range of sample sizes. drawings of random numbers. The solid lines are the theoretical
values according to Ed6).

If we draw only once a sample of sia@ from a set ofN
possible events and calculate the occupation numtibes

where we have used that aIII(J)> are identical. The prob_ cluster frequencieihe cluster distribution itself is fluctuat-
ability to find exactlyi balls in any of the urnghere labeled ing (Fig. 2, filled dot3. Averaging the cluster distribution
j) and the remaining balls distributed arbitrarily among theOVer a number of independent selections each of lsizee
remainingN—1 urns is the binomial distribution, hence, ~ cluster distribution converges to the theoretical curve pre-
dicted by Eq.(6). Figure 2 shows the cluster distribution as
M\ 1 1\ (M=) found from a random sample of sii¢ out of N=1000 al-
wonFIGles] ©

<Ki>—<§lu<j>>—§1<Ii<i>>—N<li<1>>, 5

lowed events together with cluster distributions averaged
over 100 independent drawings.

The expectation valuéK;) indicates how often events in a
sample of sizeM occur exactlyi times on an average. We
call these occupation numbaerslusters. Obviously, for small
M <N nearly all of theN possible events are 0 clusters, i.e., Equation(6) allows to determine the expectation value of
they do not occur in our sample. Ad increases the number the number of different evenié* in dependence on the total
of single occupations increases as well. For still growihg number of drawn event®l, which is simply related to the
the number of multiple occupation becomes larger andexpected probability to find a cluster of size zero,
therefore, the number of 1 clusters decreases as more and
more events occur multiple times in the sample. Figure 1
shows the occupation of thé possible different events as a
function of the sample siziél. The lines show the theoretical
result Eq.(6) and the symbols in the left of Fig. 1 show the
clusters as they have been found in sets of random numberfsom which we compute

Ill. ZIPF ORDERED FREQUENCY DISTRIBUTION

N*=N—(Ko), (7)
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FIG. 3. Number of different eventd* in a sample of sizev rank
drawn from a equidistributiop;=1/N. The dashed line shows the
analytical result Eq(8), the histograms show the results of a com-
puter simulation. topN= 1000, bottom:N=100.

FIG. 4. Zipf ordered frequency distributions calculated from
samples of sizéV from a equiprobability distribution oN= 1000
different random number@lashed lines The theoretical curve due
to Eq. (11 is drawn with solid lines.

N-k 1 M 1
N o y) Tle Mln(l_'\' S=log,N~I [3M+J3M(BN* —5M) M (10)
=109, N~10Q; 12(M —N*) ’

8

We want to compile the results from the preceding section
to find the desired Zipf ordered frequency distribution. Equa-
tion (6) tells how many, in average, events do not occur in
the sampleldrawn zero times how many are drawn once,
twice, etc. This yields directly the Zipf ordered frequency
distribution

N* M
l\Twl_ex%_N)’ (9) 0 for N=i>N—(Kp)

From Eq.(8) we see that for allM<N? Eq. (8) can be
approximated to very good accuracy by

a result which has been found before by computer simula- f(i)=
tions [8]. The maximalabsolutedeviation isN* —NX = 1/e . )
~0.37 (for N=M=1) that falls rapidly to 1/(2)~0.18 as j for N_kz_:o <Kk>>'>N_kZO (K-

N goes to infinity. In Fig. 3 the analytical resyB) is com- - - (11)
pared with a simulation. The histograms in the figure show

the results of a single realization. If we average the numeriUsing Stirling’s formula to expand the expressions in &j.
cal results over several runs the numerical curve falls tothe analytical result Eq11) can be written easily in elemen-
gether with the analytical one. tary functions.

For the wide range of practical interest, S/BX /M <1, Figure 4 shows Zipf ordered frequency distributions cal-
from Eq. (9) we may approximate the entropy of the distri- culated from a sample of random numbédashed lines
bution if we know the number of different everii6* con-  together with the theoretical distributions due to Efl)
tained in a sample of sizM: (solid lines. The combinatorial theory derived in the preced-

i-1 j
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ing section predicts the Zipf ordered frequency distributionfull Zipf ordered frequency distribution could be constructed.
that results from an equidistribution with good accuracy. By numerical simulations it has been demonstrated that the

analytically derived values coincide with experimental re-

IV. DISCUSSION sults, i.e., with cluster distributions and Zipf ordered fre-

) ) ) ) quency distributions originating from finite samples of ran-
Based on combinatorial considerations we calculated thgom numbers.

expectation values to find; eventsexactly itimes in a

samp_le of sizeM which have be_e_n_ drawn from an equidis- ACKNOWLEDGMENTS
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